
Описание функциональных

характеристик программного обеспечения

Наименование ПО: Интернет эквайринг и платежный процессинг "Логика"

Версия: v2.3.3

1. Назначение ПО

Программное обеспечение представляет собой платёжную платформу (Payment Processing

System), предназначенную для приёма и обработки электронных платежей от клиентов

мерчантов с использованием банковских карт.

2. Основные функции

• Приём платежей через банковские карты (Мир).

• Выплаты совершаются по запросу мерчанта через веб-кабинет или API (создание

заявки на вывод средств).

• API-интерфейс для интеграции с внешними системами мерчантов.

• Веб-кабинет с дашбордом для управления операциями, просмотра статистики и

выгрузки отчётов.

• 3-D Secure для защиты транзакций.

• Соответствие PCI DSS требованиям.

• Антифрод-модуль для анализа транзакций и предотвращения мошеннической

активности.

3. Технические характеристики

• Архитектура: микросервисная, сервисы на Python и Ruby, веб-сервер Nginx.

• Поддерживаемые ОС: Debian, Ubuntu, CentOS.

• Система виртуализации: KVM (допустимо использование VMware ESXi).

• Хранилище данных: PostgreSQL, Redis, MongoDB.

• Масштабирование: поддержка горизонтального и вертикального масштабирования

сервисов.

• Логирование и мониторинг: централизованная система журналирования событий и

ошибок.

4. Безопасность

• Поддержка 3-D Secure.

• Собственный антифрод-модуль для выявления подозрительных операций.

• Шифрование данных (TLS 1.2/1.3).

• Соответствие требованиям PCI DSS по хранению и обработке данных карт.

5. Ограничения

• ПО требует подключения к банкам-эквайерам для работы.

• Выплаты возможны только при наличии подтверждённой заявки мерчанта.

Getting Started

This repo includes all needed services.

To clone all repos at once just run:

git clone git@gitlab.com:reactive-pay-distribution/rpay-engine.git

Docker install

Install docker on your local machine: https://www.docker.com/community-edition#/download

Then start building your services:

docker-compose build

or

./build.sh

Once it finished we need to setup some basic data.

Setup all service:

./init.sh

Setup business service:

• docker-compose run --rm business bash
• rake db:create
• rake db:migrate
• rake db:seed
• exit

If something went wrong with development data, you can try to clear the database using the

following rake task:

• rake db:clear

It clears all data but does not drop the database, so you can start over rake db:migrate again.

Setup core service:

• docker-compose run --rm core bash
• rake db:create
• rake db:migrate
• rake db:seed
• rake reactivepay:setup_db_data
• rake reactivepay:add_demo_business_account
• rake reactivepay:add_wallet_business_account
• exit

https://www.docker.com/community-edition#/download

And again here, if something went wrong with development data, try again with rake

db:clear.

Setup settings service:

• docker-compose run --rm settings bash
• rake db:create
• rake db:migrate
• rake db:seed
• exit

Setup guard service:

For guard service there's no any additional setup.

Get up and running your services:

• docker-compose up

or

• ./up.sh

Metabase

• setup your local metabase at http://localhost:9000/setup

• to connect to your business and core dbs enter the following credentials

• name: business (or core)

• host: postgres

• port: 5432

• database name: reactivepay_business_development (or reactivepay_core_development)

• database username: postgres

• database password: leave empty

• Additional JDBC connection string options: leave empty

• Use an SSH-tunnel for database connections: false

• This is a large database, so let me choose when Metabase syncs and scans: false

To add another db just go to http://localhost:9000/admin/databases/create

Final checks

Check that services are reachable for each other.

To do that, enter into each container and try to reach other service via RestClient

please note:

• you should get up and running your services first to be able to reach multiple services

from separate console

core:

http://localhost:9000/setup
http://localhost:9000/admin/databases/create

→ docker-compose run --rm core bash

Starting rpay-engine_postgres_1 ... done

Starting rpay-engine_redis_1 ... done

root@b3a4703d4a1c:/services/core# rails c

Loading development environment (Rails 4.2.8)

[1] pry(main)> RestClient.get(Rails.application.config.settings_host_url)

=> <RestClient::Response 200 "{\"version\":...">

[2] pry(main)> RestClient.get(Rails.application.config.business_host_url)

=> <RestClient::Response 200 "{\"version\":...">

[3] pry(main)> redis_info = Sidekiq.redis { |conn| conn.info }

=> {"redis_version"=>"4.0.8",

...

business:

→ docker-compose run --rm business bash

Starting rpay-engine_postgres_1 ... done

Starting rpay-engine_redis_1 ... done

root@b837767f5d4e:/services/business# rails c

Loading development environment (Rails 4.2.8)

[1] pry(main)> RestClient.get(Rails.application.config.settings_host_url)

=> <RestClient::Response 200 "{\"version\":...">

[2] pry(main)> RestClient.get(Rails.application.config.core_host_url)

=> <RestClient::Response 200 "{\"success\":...">

[3] pry(main)> RestClient.get(Rails.application.config.antifraud_service_url)

=> <RestClient::Response 200 "{\"version\":...">

[4] pry(main)> redis_info = Sidekiq.redis { |conn| conn.info }

=> {"redis_version"=>"4.0.8",

...

How to perform default gateway callback for dev needs

Send POST request to http://localhost:4000/callback/default with the following data:

{

 "token": "58576d820b58552cddc3b03e548c8017"

}

Where 58576d820b58552cddc3b03e548c8017 is your payment token (you can grab it from url

http://localhost:4000/checkout_results/58576d820b58552cddc3b03e548c8017 via checkout

process)

How to remove all docker's local artefacts

./clean_all.sh

Описание методов эксплуатации

1. Авторизация пользователя

Для доступа к функционалу приложения менеджер (или иной уполномоченный

пользователь) проходит процедуру аутентификации на странице входа.

http://localhost:4000/callback/default
http://localhost:4000/checkout_results/58576d820b58552cddc3b03e548c8017

Менеджер имеет доступ к административному функционалу, включая просмотр

транзакций, управление мерчантами, создание отчётов и экспорт данных.

2. Раздел «Мерчанты»

Раздел предназначен для управления учётными записями мерчантов (торговых

партнёров), подключённых к платёжной системе. Здесь менеджеры могут просматривать,

редактировать и добавлять новых мерчантов, а также получать доступ к их учётным

данным и настройкам.

Функциональные возможности:

1. Поиск и фильтрация:

o В верхней части интерфейса расположен поисковый блок, позволяющий выполнять

поиск по ID, номеру телефона или адресу электронной почты.

o Также доступен фильтр по статусу — реальный или тестовый мерчант.

2. Таблица мерчантов:

В таблице отображаются основные сведения по каждому мерчанту:

o Дата создания — дата регистрации мерчанта в системе.

o ID — уникальный идентификатор в базе данных.

o Наименование компании — юридическое или торговое имя партнёра.

o Email — контактный адрес для уведомлений и связи.

o Субаккаунты — количество дочерних аккаунтов (если используется

многоуровневая структура).

o Приватный ключ мерчанта — используется для аутентификации запросов в API.

o Реальный / Тестовый статус — определяет тип учётной записи (True — боевой,

False — тестовый).

o Действия — панель управления для редактирования, удаления и входа в профиль

мерчанта.

3. Действия над записями:

o Редактирование (иконка карандаша) — открывает форму изменения данных

мерчанта.

o Авторизация от имени мерчанта (иконка стрелки) — выполняет вход в систему от

имени выбранного мерчанта для проверки его интерфейса и прав доступа.

o Удаление (иконка корзины, если доступна) — удаляет учётную запись после

подтверждения.

4. Добавление нового мерчанта:

В правом верхнем углу расположена кнопка «Добавить нового мерчанта». При нажатии

открывается форма регистрации нового партнёра, где указываются реквизиты, контактные

данные, валюты, ключи API и прочие параметры подключения.

3. Раздел «Платежи / Выплаты»

Назначение:

Раздел предназначен для мониторинга, анализа и управления всеми финансовыми

операциями, проходящими через систему — как входящими платежами от клиентов, так и

исходящими выплатами мерчантам.

Функциональные возможности:

1. Поиск и фильтрация:

o В верхней панели доступен поиск по токену, email, наименованию компании,

псевдониму шлюза или ID мерчанта.

o Поддерживается фильтрация по типу операции (например, PayinRequest,

PayoutRequest) и статусу (Created, Approved, Declined, Error и т.д.).

o Возможность выбора количества отображаемых записей на странице (по

умолчанию — 20).

o Дополнительно доступна фильтрация по дате создания через встроенный

календарь.

2. Таблица операций:

В таблице отображается список всех финансовых транзакций с ключевыми параметрами:

o Дата создания — время регистрации операции в системе.

o Имя компании — мерчант, от имени которого был инициирован платёж.

o Сумма — величина транзакции.

o Валюта — код валюты (RUB, EUR, USD и т.п.).

o Токен — уникальный идентификатор платежа, используемый для API-запросов и

отслеживания статуса.

o Псевдоним шлюза — имя подключенного платёжного шлюза, через который

проведена операция.

o Тип — классификация операции (например, входящий платёж — PayinRequest,

исходящий — PayoutRequest).

o Статус — текущее состояние операции (Created, Approved, Declined, Error и др.),

отображается цветовым индикатором для удобства мониторинга.

o Действия — доступ к дополнительной информации о транзакции (кнопка INFO) и

контекстное меню с расширенными функциями.

3. Информационная карточка операции:

При нажатии на кнопку INFO открывается детальная карточка транзакции, содержащая:

o параметры запроса и ответа шлюза,

o временные метки всех этапов обработки,

o результат проверки антифрод-модуля,

o данные о мерчанте и используемом шлюзе.

